Hydratstufen des Magnesiumsulfates

•	$MgSO_4$	Anhydrat	metastabil
•	$MgSO_4 \cdot 1H_2O$	Kieserit	stabil
•	$MgSO_4 \cdot 1.25H_2O$	1.25-Hydrat	metastabil
•	$MgSO_4 \cdot 2H_2O$	Sanderit	metastabil
•	$MgSO_4 \cdot 3H_2O$	Trihydrat	metastabil
•	$MgSO_4 \cdot 4H_2O$	Starkeyit	metastabil
•	$MgSO_4 \cdot 5H_2O$	Pentahydrit	metastabil
•	$MgSO_4 \cdot 6H_2O$	Hexahydrit	stabil
•	$MgSO_4 \cdot 7H_2O$	Epsomit	stabil

Tab. 1: Fällung und Trocknung von Magnesiumsulfaten ohne Porenraum

T (°C)	Vorgang		Identifizierte Phasen	stabile Phase
60	Kristallisation aus der	Epsomit		Hexahydrit
	Lösung, Heißfiltration			
100	Kristallisation aus der	1 Tag	Trihydrat	Kieserit
	Lösung, Trocknung	8 Tagen	Trihydrat, 1.25-Hydrat und Kieserit	
		16 Tagen	1.25-Hydrat und Kieserit	
160	Trocknung von Epsomit	1.25 Hydra	t bei Gewichtskonstanz	Kieserit
		(Restwasse	rgehalt aus der Massenbilanz 1.4)	
200	Trocknung von Epsomit	39 Tage	Kieserit	Kieserit
		(Restwasse	rgehalt aus der Massenbilanz 0.7)	

Tab. 2: Trocknung von Magnesiumsulfatgetränkten G5-Fritten

T (°C)		Identifizierte Phasen	stabile Phase	
RT	7 Tage	Epsomit	Epsomit	
60	5 Tage	Epsomit	Hexahydrit	
100	6 Tag Dihydrat, Trihydrat, Hexahydrit, Epsomit		Kieserit	
	13 Tagen	Trihydrat, 1.25-Hydrat		
	23 Tagen	1.25-Hydrat		
200	1 Tag	Trihydrat, wenig 1.25 Hydrat und Kieserit	Kieserit	
	4 Tagen	1.25-Hydrat, wenig Trihydrat		
	25 Tage	Kieserit oder 1.25 Hydrat ev. Anhydrat		
	•			

Die folgenden Tabellen beziehen sich jeweils auf einen Versuch, der in der Feuchtekammer des Röntgendiffraktometers durchgeführt worden ist. Die Zeit gibt an wie lange die relative Luftfeuchte bei dem in der Tabelle angegebenen Wert gehalten wurde. Nach dieser Konditionierung wurde ein Diffraktogramm aufgenommen und anschließend habe ich die relative Luftfeuchte in einem Schritt auf den in der nächsten Zeile angegebenen Wert erhöht. Dies gilt nicht für die Feuchten in Tabelle 3 bei denen Gradient angegeben ist. Hier habe ich von 40% r.F. (Zeile 3 Tabelle3) beginnend die relative Luftfeuchte nach 2 h um 1% erhöht Vor der Erhöhung habe ich jeweils ein Diffraktogramm aufgenommen. Die ersten Hexahydrit-Reflexe habe ich bei 50% r.F. beobachten können bei 57% r.F. konnte ich keine 1.25-Hydrat-Reflexe mehr erkennen. Die Diffraktogramme habe ich sofern nicht anders angegeben, von 10 70 2Theta aufgenommen.

Tab. 3: Phasenumwandlung von Magnesiumsulfathydraten bei 25°C

24 h

42

Hexahydrit

Zeit	r.F. %	Identifizierte Phasen	stabile Phase
		1.25 Hydrat	Kieserit
160°C			
13 h	3	1.25 Hydrat	Kieserit
24 h	40	1.25 Hydrat	Hexahydrit
34 h	50 bis 57	Hexahydrit / 1.25 Hydrat	Epsomit
	(Gradient)		
26 h	57 bis70	Hexahydrit	Epsomit
	(Gradient)		
Hexahydrit	mit Pistill verrie	ben, dazu das Magnesiumsulfat aus der F	euchtkammer entnommen
12 h	90	Epsomit	Epsomit
24 h	55	Epsomit	Epsomit
24 h	45	Epsomit, wenig Hexahydrit	Hexahydrit
24 h	43	Epsomit, wenig Hexahydrit	Hexahydrit
24 h	42	Epsomit, wenig Hexahydrit	vermutet Hexahydrit/Kieserit
Epsomit mi	t Pistill verrieber	n, dazu das Magnesiumsulfat aus der Feuc	chtkammer entnommen
	1		

vermutet Hexahydrit/Kieserit

Tab. 4: Phasenumwandlung von MgSO₄ im Porenraum einer G5-Fritte (1) bei 25°C

Zeit	r.F. %	Identifizierte Phasen	stabile Phase
1 d		Trihydrat, wenig 1.25 Hydrat und Kieserit	Kieserit
200°C			
3 d	29	Hexahydrit	Kieserit
15 min	75	Epsomit	Epsomit
11 h	< 3%	keine Intensitäten	Kieserit
24 h	29	Hexahydrit	Kieserit
24 h	20	Abnahme der Hexahydrit Reflexintensitäten	Kieserit
24 h	24 h 10 Abnahme der Hexahydrit Reflexintensitäten		Kieserit

Tab. 5: Phasenumwandlung von MgSO₄ im Porenraum einer G5-Fritte (2) bei 25°C

Zeit	r.F. %	Identifizierte Phasen	stabile Phase	
25 d		Kieserit oder 1.25 Hydrat ev. Anhydrat	Kieserit	
200°C				
3 d	29	Kieserit oder 1.25 Hydrat ev. Anhydrat	Kieserit	
2 min	75			
17 min	29	Hexahydrit,	Kieserit	
		keine Aussage über andere Hydrate möglich,		
		19-23 2Theta beobachtet		
10 min	29	Hexahydrit,	Kieserit	
		keine Aussage über andere Hydrate möglich,		
		19-23 2Theta beobachtet		
12 min	75	Hexahydrit, Anstieg der Reflexintensitäten	Epsomit	
		kein Auftreten von Epsomit Reflexen,		
		19-23 2Theta beobachtet		

Tab. 6 Zusammenfassung der beobachteten Phasenumwandlung von MgSO₄ bei 25°C

					Gleich-
		Poren-		Auslösende	gewichts-
Edukt	Produkt	raum		Luftfeuchte	feuchte
1.25 Hydrat	Hexahydrit	n	spontan	50%	?
Trihydrat, 1.25 Hydrat	Hexahydrit	j	spontan	29%	?
Kieserit, 1.25 Hydrat	Hexahydrit	j	spontan	75%	42.1%
Hexahydrit	Epsomit	n	gehemmt	90%	51.3%
Hexahydrit	Epsomit	j	spontan	75%	51.3%
Epsomit	Hexahydrit	n	gehemmt	45%	51.3%
Epsomit	keine Intensitäten	j	spontan	< 3%	51.3%

Schlußfolgerung

- Welche Hydratstufe vorliegt ist nicht allein durch die Thermodynamik sondern auch durch die Kinetik bestimmt.
- Die Hydratstufe die im Porenraum vorliegt, kann nicht durch Experimente ohne Porenraum vorhergesagt werden.
- Versuchsbedingungen (Temperatur, Zeit, relative Luftfeuchte, Lagerung der Probe)
 müssen genau abgestimmt und bekannt sein, um die Experimente miteinander abgleichen bzw. die vorliegende Hydratstufen bestimmen zu können.